HVAC FORMULAS

Temperature Conversions: C=Celsius K=Kelvin F=Fahrenheit R=Rankine				
C = K - 273.15	K = C + 273.15	F = (1.8 x C) + 32	C = (F - 32) / 1.8	R = F + 459.67

Pressure Conversions

Atmospheric pressure at sea level = 14.7 Psia = 0 Psig = 29.92 in Hg = 407.2 in WC = 101.4 kPa

Gas Laws: P1=Pressure 1 P2=Pressure 2 V1=Volume 1 V2=Volume 2 T1=Temp 1 T2=Temp 2			
Boyle's Law (w/ sample	Charles' Law (w/ sample	General Law of Perfect Gas	Dalton's Law (w/
variations)	variations)	(w/sample variations)	sample variations)
P1 x V1 = P2 x V2	V1 / T1 = V2 / T2	(P1 x V1) / T1 = (P2 x V2) / T2	P total = P1 + P2
V2 = (P1 x V1) / P2	V2 = (V1 x T2) / T1	P2 = (P1 x V1 x T2) / (T1 x V2)	P2 = P total – P1
P2 = (P1 x V1) / V2	T2 = (V2 x T1) / V1	T1 = (P1 x V1 x T2) / (P2 x V2)	P1 = P total – P2

Ohms Law and the Power Formula

Characteristics of Simple Circuits			
Series Circuits Parallel Circuits			
E total = E1 + E2 + E3 E total = E1 = E2 = E3			
l total = I1 = I2 = I3	I total = I1 + I2 + I3		
R total = $R1 + R2 + R3$ R total = $1 / [(1 / R1) + (1 / R2) + (1 / R3)$			
P total = P1 + P2 + P3 P total = P1 + P2 + P3			

Electric Motor Applications: EFF=Efficiency HP=Horsepower PF=Power Factor I=Amps E=Volts			
To Find:	Direct Current	Single Phase	Three Phase
HP	(E x I x EFF) / 746	(E x I x EFF x PF) / 746	(1.732 x E x I x EFF x PF) / 746
I	(746 x HP) / (E x EFF)	(746 x HP) / (E x EFF x PF)	(746 x HP) / (1.732 x E x EFF x PF)
EFF	(746 x HP) / (E x I)	(746 x HP) / (E x I x PF)	(746 x HP) / (1.732 x E x I X PF)
PF	N/A	Input Watts / (E x I)	Input Watts / (1.732 x E x I)

Useful Electric Motor Performance Formulas			
RPM = Frequency x 60 x Poles	HP = (Torque in lb/ft x RPM) / 5250	kW = (Torque in Nm x RPM) / 9550	
Torque in lb/ft = (HP x 5250) / RPM	Torque in Nm = (kW x 9550) / RPM		

Energy Conversions

1 ton of refrigeration= 12,000 BTU/hr 1 ton of refrigeration= 200 BTU/min 1 ton of refrigeration= 288,000 BTU/24 hrs 1 Therm= 100,000 BTU/hr Work (ft/lb)= Force (lb) x Distance (ft) 1 HP= 746 Watts 1 Watt= 3.413 BTU/hr 1 kW= 3,413 BTU/hr 1.341 HP= 3,413 BTU/hr Watts per ton= (HP/ton) x 746

HVAC FORMULAS

Fan and Pump Laws: P= Pressure H= Head			
Fan Laws Pump Laws			
CFM2 / CFM1 = RPM2 / RPM1	GPM2 / GPM1 = RPM2 / RPM1		
$P2 / P1 = (CFM2 / CFM1)^2$	$H2 / H1 = (GPM2 / GPM1)^2$		

Formulas for Sizing Duct		
Airflow	FPM = CFM / duct area in sq ft	
Duct pressure Total pressure = static pressure + velocity pressure		
Square equivalent of round duct	3.14 x $radius^2$ = sq in of duct \rightarrow sq in / 144 = sq ft	

The Sensible Heat Formula: $Q = C \times M \times \Delta T$			
Q= quantity of sensible heat in BTU/hr	M= mass	C= specific heat of material	ΔT = temp difference
Applied to Standard Air		Applied to Water	(not glycol)
$Q = 1.08 \times CFM \times \Delta T$		Q = 500 x GPM x ΔT	
$CFM = Q / 1.08 \times \Delta T$		GPM = Q / 500 x ΔT	
CFM = kW x 3413 / 1.08 x ΔT		GPM = tons x 24 / ΔT	
(when kW used instead of BTU/hr)		(when using tons instead of 12,	.000 BTU/hr)

Hydronic Formulas		
Expansion tank pressure setting	$P^{tank} = (H / 2.31) + 5$	
Flow mixes(Flow3 x Temp3) = (Flow1 x Temp1) + (Flow2 x Temp2)		
Pump motor sizeHP = GPM x PSI x specific gravity of fluid / 1713 x efficiency of pump		

Approximate Energy Content of Fuels

1 cu ft natural gas= 1,000 BTU/hr 1 ton of coal= 25,000,000 BTU/hr 1 gallon of #2 fuel oil= 139,600 BTU/hr 1 cord of wood= 30,000,000 BTU/hr 1 gallon of LP= 95,000 BTU/hr

Refrigeration Calculations : COP= Coefficient of Performance EER= Energy Efficiency Ratio SEER=			
Seasonal Energy Efficiency Ratio			
Compression ratio = discharge pressure / suction	Net refrigeration effect = enthalpy of vapor leaving		
pressure	evaporator – enthalpy of liquid entering evaporator		
COP = net refrigeration effect (BTU/hr) / heat of	Heat of compression = enthalpy of vapor leaving		
compression (BTU/hr)	compressor – enthalpy of vapor entering compressor		
EER = output cooling in BTU per hr / input energy in	SEER = (output cooling in BTU per hr x seasonal run		
watts per hr	time) / (input energy in watts per hr x seasonal run		
	time)		